Selaindengan persamaan matriks, teknik menyelesaikan sistem persamaan linier juga dapat dilakukan dengan determinan matriks. Aturan dengan cara ini adalah : Untuk lebih jelaxnya, ikutilah contoh soal berikut ini: 02. Tentukan himpunan penyelesaian sistem persamaan 2x - 3y = 8 dan x + 2y = -3 dengan metoda: (a) Invers matriks (b) Determinan. Persamaanlinear dua variabel memiliki bentuk umum: ax + by = c dengan a dan b adalah koefisien, sedangkan c adalah konstanta, x dan y adalah variabel. Contoh 2.3: Carilah penyelesaian dari 2x + y = 4 Jawab: Jika x = 0, maka 2 (0) + y = 4, sehingga y = 4. Jadi penyelesaiannya adalah (0,4) Jika x = 1, maka 2 (1) + y = 4, sehingga y = 2. 130Tp1. Setelah membahas Eliminasi Gauss & Gauss Jordan 3×3, kali ini saya akan menjelaskan Eliminasi Gauss dan Gauss Jordan untuk Sistem Persamaan Linear SPL 4 Variabel. Beberapa istilahnya sudah sering kita dengar sebelumnya, seperti matriks augmentasi matriks yang diperlebar, matriks eselon baris, dan matriks eselon baris tereduksi. Hal yang membedakan dengan pembahasan sebelumnya adalah jumlah variabel lebih banyak yaitu 4 variabel. SPL 4 Variabel Bentuk umum Ubah persamaan tersebut menjadi matriks augmentasi Eliminasi Gauss Langkah eliminasi dimulai dari e – i – m – n – j – o – p – k – f – a dengan elemen kunci yang berwarna hijau yaitu a, f, k, dan p. Hingga terbentuk matriks eselon baris dan diperoleh nilai variabel x4. Langkah dilanjutkan dengan substitusi balik untuk mencari nilai variabel x1, x2, dan x3. Contoh Soal Contoh Tentukan nilai keempat variabel dari sistem persamaan linear berikut! SPL A SPL B Penyelesaian Ubah SPL diatas menjadi matriks augmentasi. Khusus untuk mengubah elemen e menjadi nol, kita bisa menggunakan elemen yang lebih mudah dihitung. Ubah elemen i menjadi nol menggunakan kunci elemen a. Ubah elemen m menjadi nol menggunakan kunci elemen a. Ubah elemen n menjadi nol menggunakan kunci elemen f. Ubah elemen j menjadi nol menggunakan kunci elemen f. Ubah elemen o menjadi nol menggunakan kunci elemen k. Ubah elemen a, f, k, p menjadi angka satu dengan cara SPL A SPL B Substitusi nilai x4 dan z ke persamaan 3 baris ketiga SPL A SPL B Substitusi nilai x3, x4, y dan z ke persamaan 2 baris kedua SPL A SPL B Substitusi nilai x2, x3, x4, x, y dan z ke persamaan 1 baris pertama SPL A SPL B Eliminasi Gauss Jordan Eliminasi Gauss Jordan adalah lanjutan dari eliminasi Gauss hingga membentuk matriks eselon baris tereduksi. Urutan langkah OBE K digunakan untuk menghitung invers matriks 4×4 metode OBE. Selain itu juga dapat digunakan untuk mempermudah langkah eliminasi Gauss Jordan. Urutan langkahnya dimulai dari e – i – m – n – j – o – p – l – h – d – c – g – f – b – a, sampai terbentuk matriks eselon baris tereduksi dan diperoleh nilai keempat variabel. Contoh Soal Dari contoh soal Eliminasi Gauss tentukan nilai keempat variabel dari sistem persamaan linear berikut! SPL A SPL B Penyelesaian Langkah 1 – 7 lihat Eliminasi Gauss diatas. 8. Ubah elemen p menjadi angka satu dengan cara Ubah elemen l menjadi nol menggunakan kunci elemen p. Ubah elemen k menjadi angka satu dengan cara Ubah elemen h menjadi nol menggunakan kunci elemen p. Ubah elemen d menjadi nol menggunakan kunci elemen p. Ubah elemen c menjadi nol menggunakan kunci elemen k. Ubah elemen g menjadi nol menggunakan kunci elemen k. Ubah elemen f menjadi angka satu dengan cara Ubah elemen b menjadi nol menggunakan kunci elemen f. Ubah elemen a menjadi angka satu dengan cara Sehingga diperoleh SPL A SPL B Pembahasan terkait SPL 3 Variabel Cramer > Gauss & Gauss Jordan > SPL Homogen Navigasi pos JawabPilihan yang benar adalah dengan langkah-langkahSistem pertidaksamaan linear dua variabel dengan dua persamaan berikut4x - 3y = 5x - 2y = -4bisa ditulis menjadidari persamaan matriks di atas, kita bisa merubahnya supaya dinyatakan dalam bentuk x dan y menjadiPelajari lebih lanjut Detil Tambahan Kelas 11 SMA Mapel MatematikaMateri MatriksKode Kata Kunci Matriks, Inverse Matriks Selain cara 17 langkah yang sudah saya jelaskan di OBE Kunci K, saya mempunyai penyelesaian invers matriks 4×4 dan SPL 4 variabel dengan cara 11, 9, 8, 7, dan 6 langkah penyelesaian. Semakin cepat langkahnya, semakin sulit rumus, perhitungan, dan nilai elemen matriksnya. Oleh karena itu, dengan berbagai pertimbangan hanya cara cepat invers matriks 4×4 dan SPL 4 variabel dalam 9 langkah versi pdf ini saja yang saya bagikan. Kunci Kunci OBE yaitu diagonal utama matriks yang berisi elemen a, f, k, dan p. Invers Matriks 4×4 Ada dua tipe pola penyelesaian invers matriks 4×4, yaitu Genap Invers 4× Langkah OBE Tambahkan matriks identitas disebelah kanan. Ubah elemen e, i , dan m menjadi nol. Ubah elemen j dan n menjadi nol. Ubah elemen d, h, dan l menjadi nol. Ubah elemen k menjadi satu. Ubah elemen c, g, dan o menjadi nol. Ubah elemen f dan p menjadi satu. Ubah elemen b menjadi nol. Ubah elemen a menjadi satu. Genap Invers 4× Langkah OBE Tambahkan matriks identitas disebelah kanan. Ubah elemen d, h , dan l menjadi nol. Ubah elemen c dan g menjadi nol. Ubah elemen e, i, dan m menjadi nol. Ubah elemen f menjadi satu. Ubah elemen b, j, dan n menjadi nol. Ubah elemen a dan k menjadi satu. Ubah elemen o menjadi nol. Ubah elemen p menjadi satu. Pola mana yang sebaiknya digunakan? Tergantung matriks yang akan dicari inversnya. Sebagian matriks mudah dicari dengan Genap Invers 4× sebagian lainnya dengan Genap Invers 4× Contoh Soal Contoh Tentukan invers matriks berikut ini! Matriks A kunci elemen kolom 1 yaitu 1 satu lebih mudah dihitung. Matriks B kunci elemen kolom 1 yaitu 2 dua memudahkan elemen e, i, dan m diubah jadi nol. Maka, penyelesaian menggunakan Genap Invers 4× Penyelesaian Tambahkan matriks identitas. Ubah elemen e, i, dan m menjadi nol menggunakan kunci elemen a. Ubah elemen j dan n menjadi nol menggunakan kunci elemen f. Ubah elemen d, h, dan l menjadi nol menggunakan kunci elemen p. Ubah elemen k menjadi satu dengan cara Ubah elemen c, g, dan o menjadi nol menggunakan kunci elemen k. Ubah elemen f dan p menjadi satu dengan cara Ubah elemen b menjadi nol menggunakan kunci elemen f. Ubah elemen a menjadi satu dengan cara Maka, invers matriks Sistem Persamaan Linear 4 Variabel Saya sudah menjelaskan SPL 4 Variabel dalam Eliminasi Gauss & Gauss Jordan 4×4. Namun, 17 langkah rasanya yang cukup panjang. Oleh karena itu, saya tulis cara cepatnya menggunakan Genap SPL 4× dan Genap SPL 4× berikut ini. Genap SPL 4× Genap SPL 4× Contoh Soal Contoh Tentukan nilai variabel dari sistem persamaan linear berikut! Dua contoh soal diatas akan diselesaikan dengan pola Genap Penyelesaian Ubah SPL menjadi matriks. Ubah elemen d, h, dan l menjadi nol menggunakan kunci elemen p. Ubah elemen c dan g menjadi nol menggunakan kunci elemen k. Ubah elemen e, i, dan m menjadi nol menggunakan kunci elemen a. Ubah elemen f menjadi satu dengan cara Ubah elemen b, j, dan n menjadi nol menggunakan kunci elemen f. Ubah elemen a dan k menjadi satu dengan cara Ubah elemen o menjadi nol menggunakan kunci elemen k. Ubah elemen p menjadi satu dengan cara Maka, C. D. Invers Matriks 4×4 OBE Kunci K > OBE Genap

persamaan linear 4 variabel matriks